21.2 Signaling in Single-Celled Organisms
OpenStaxCollege
Learning Objectives
By the end of this section, you will be able to:
- Differentiate signaling between single-celled and multi-celled organisms
- Describe how single-celled yeasts use cell signaling to communicate with one another
- Relate the role of quorum sensing to the ability of some bacteria to form biofilms
Within-cell signaling allows bacteria to respond to environmental cues, such as nutrient levels, some single-celled organisms also release molecules to signal to each other.
Signaling in Yeast
Yeasts are eukaryotes (fungi), and the components and processes found in yeast signals are similar to those of cell-surface receptor signals in multicellular organisms. Budding yeasts ([link]) are able to participate in a process that is similar to sexual reproduction that entails two haploid cells (cells with one-half the normal number of chromosomes) combining to form a diploid cell (a cell with two sets of each chromosome, which is what normal body cells contain). In order to find another haploid yeast cell that is prepared to mate, budding yeasts secrete a signaling molecule called mating factor. When mating factor binds to cell-surface receptors in other yeast cells that are nearby, they stop their normal growth cycles and initiate a cell signaling cascade that includes protein kinases and GTP-binding proteins that are similar to G-proteins.
Signaling in Bacteria
Signaling in bacteria enables bacteria to monitor extracellular conditions, ensure that there are sufficient amounts of nutrients, and ensure that hazardous situations are avoided. There are circumstances, however, when bacteria communicate with each other.
The first evidence of bacterial communication was observed in a bacterium that has a symbiotic relationship with Hawaiian bobtail squid. When the population density of the bacteria reaches a certain level, specific gene expression is initiated, and the bacteria produce bioluminescent proteins that emit light. Because the number of cells present in the environment (cell density) is the determining factor for signaling, bacterial signaling was named quorum sensing. In politics and business, a quorum is the minimum number of members required to be present to vote on an issue. Dr. Bonnie Bassler, a microbiologist at Princeton University, worked out the mechanism by which quorum sensing works in the bacterium Vibrio fischeri, which have the capacity to produce bioluminescense by expressing the enzyme luciferase. Free-living V. fischeri do not produce luciferase, but V. fischeri living in a symbiotic relationship with the Hawaiian bobtail squid do. The luminescence makes it difficult to see the squid from below because it effectively eliminates its shadow. In return for camouflage, the squid provides food for the bacteria.
Quorum sensing uses autoinducers as signaling molecules. Autoinducers are signaling molecules secreted by bacteria to communicate with other bacteria of the same kind. The secreted autoinducers can be small, hydrophobic molecules such as acyl-homoserine lactone, (AHL) or larger peptide-based molecules; each type of molecule has a different mode of action. When AHL enters target bacteria, it binds to transcription factors, which then switch gene expression on or off ([link]). The peptide autoinducers stimulate more complicated signaling pathways that include bacterial kinases. The changes in bacteria following exposure to autoinducers can be quite extensive. The pathogenic bacterium Pseudomonas aeruginosa has 616 different genes that respond to autoinducers.
Some species of bacteria that use quorum sensing form biofilms, complex colonies of bacteria (often containing several species) that exchange chemical signals to coordinate the release of toxins that will attack the host. Bacterial biofilms ([link]) can sometimes be found on medical equipment; when biofilms invade implants such as hip or knee replacements or heart pacemakers, they can cause life-threatening infections.
What advantage might biofilm production confer on the S. aureus inside the catheter?
Research on the details of quorum sensing has led to advances in growing bacteria for industrial purposes. Recent discoveries suggest that it may be possible to exploit bacterial signaling pathways to control bacterial growth; this process could replace or supplement antibiotics that are no longer effective in certain situations.
Watch geneticist Bonnie Bassler discuss her discovery of quorum sensing in biofilm bacteria in squid.
Section Summary
Yeasts and multicellular organisms have similar signaling mechanisms. Yeasts use cell-surface receptors and signaling cascades to communicate information on mating with other yeast cells. The signaling molecule secreted by yeasts is called mating factor.
Bacterial signaling is called quorum sensing. Bacteria secrete signaling molecules called autoinducers that are either small, hydrophobic molecules or peptide-based signals. The hydrophobic autoinducers, such as AHL, bind transcription factors and directly affect gene expression. The peptide-based molecules bind kinases and initiate signaling cascades in the cells.
Free Response
What characteristics make yeasts a good model for learning about signaling in humans?
Yeasts are eukaryotes and have many of the same systems that humans do; however, they are single-celled, so they are easy to grow, grow rapidly, have a short generation time, and are much simpler than humans.
Why is signaling in multicellular organisms more complicated than signaling in single-celled organisms?
Multicellular organisms must coordinate many different events in different cell types that may be very distant from each other. Single-celled organisms are only concerned with their immediate environment and the presence of other cells in the area.
Footnotes
- 1G. Manning, G.D. Plowman, T. Hunter, S. Sudarsanam, “Evolution of Protein Kinase Signaling from Yeast to Man,” Trends in Biochemical Sciences 27, no. 10 (2002): 514–520.