"

Answer Keys to Selected Problems

Chapter 4 Key

4.1.  An equation is balanced when the same number of each element is represented on the reactant and product sides. Equations must be balanced to accurately reflect the law of conservation of matter.

 

4.3.

(a)  PCl5(s) + H2O(l) → POCl3(l) + 2 HCl(aq)

(b)  3 Cu(s) + 8 HNO3(aq) → 3 Cu(NO3)2(aq) + 4 H2O(l) + 2 NO(g)

(c)  H2(g) + I2(s) → 2 HI(s

(d)  4 Fe(s) + 3 O2(g) → 2 Fe2O3(s

(e)  2 Na(s) + 2 H2O(l) → 2 NaOH(aq) + H2(g)

(f)  (NH4)2Cr2O7(s) → Cr2O3(s) + N2(g) + 4 H2O(g)

(g)  P4(s) + 6 Cl2(g) → 4 PCl3(l)

(h)  PtCl4(s) → Pt(s) + 2 Cl2(g)

 

4.5.

(a)  CaCO3(s) → CaO(s) + CO2(g)

(b)  2 C4H10(g) + 13 O2(g) → 8 CO2(g) + 10 H2O(g)

(c)  MgCl2(aq) + 2 NaOH(aq) → Mg(OH)2(s) + 2 NaCl(aq)

(d)  2 H2O(g) + 2 Na(s) → 2 NaOH(s) + H2(g)

 

4.7.

(a)  Ba(NO3)2, KClO3

(b)  2 KClO3(s) → 2 KCl(s) + 3 O2(g)

(c)  2 Ba(NO3)2(s) → 2 BaO(s) + 2 N2(g) + 5 O2(g)

(d)  2 Mg(s) + O2(g) → 2 MgO(s)

    4 Al(s) + 3 O2(g) → 2 Al2O3(s)
    4 Fe(s) + 3 O2(g) → 2 Fe2O3(s)

 

4.9.

(a)  4 HF(aq) + SiO2(s) → SiF4(g) + 2 H2O(l)

(b)  2 Na+(aq) + 2 F(aq) + Ca2+(aq) + 2 Cl(aq) → CaF2(s) + 2 Na+(aq) + 2 Cl(aq) (complete)

    2 F(aq) + Ca2+(aq) → CaF2(s) (net)

 

4.11.

(a)  2 K+(aq) + C2O42−(aq) + Ba2+(aq) + 2 OH(aq) → 2 K+(aq)+ 2 OH(aq) + BaC2O4(s) (complete)

    Ba2+(aq) + C2O42−(aq) → BaC2O4(s) (net)

(b)  Pb2+(aq) + 2 NO3(aq) + 2 H+(aq) + SO42−(aq) → PbSO4(s) + 2 H+(aq)+ 2 NO3(aq) (complete)

    Pb2+(aq) + SO42−(aq) → PbSO4(s) (net)

(c)  CaCO3(s) + 2 H+(aq) + SO42−(aq) → CaSO4(s) + CO2(g)+ H2O(l) (complete)

   CaCO3(s) + 2 H+(aq) + SO42−(aq) → CaSO4(s) + CO2(g)+ H2O(l) (net)

4.13.  (a)  0.435 mol Na,  0.217 mol Cl2,  15.4 g Cl2(b)  0.005780 mol HgO,  2.890 × 10−3 mol O2,  9.248 × 10−2 g O2(c)  8.00 mol NaNO3,  6.8 × 102 g NaNO3(d)  1665 mol CO2,  73.3 kg CO2(e)  18.86 mol CuO,  2.330 kg CuCO3(f)  0.4580 mol C2H4Br2,  86.05 g C2H4Br2

 

4.15.  (a)  0.0686 mol Mg,  1.67 g Mg(b) 2.701 × 10−3 mol O2,  0.08644 g O2(c)  6.43 mol MgCO3,  542 g MgCO3(d)  768 mol H2O,  13.8 kg H2O(e)  16.31 mol BaO2,  2762 g BaO2(f)  0.207 mol C2H4,  5.81 g C2H4

 

4.17.

(a)  volume HCl solution → mol HCl → molGaCl3

(b)  1.25 mol GaCl3,  2.2 × 102 g GaCl3

 

4.19.  (a)  5.337 × 1022 molecules(b)  10.41 g Zn(CN)2

 

4.21SiO2 + 3 C → SiC + 2 CO, 4.50 kg SiO2

 

4.23.  5.00 × 103 kg

 

4.25.  1.28 × 105 g CO2

 

4.27.  161.4 mL KI solution

 

4.29.  176 g TiO2

 

4.31.  The limiting reactant is Cl2.

 

4.33Percent yield = 31%

 

4.35g CCl4 → mol CCl4 → mol CCl2F2 → g CCl2F2; percent yield = 48.3%

 

4.37percent yield = 91.3%

 

4.39.  Convert mass of ethanol to moles of ethanol; relate the moles of ethanol to the moles of ether produced using the stoichiometry of the balanced equation. Convert moles of ether to grams; divide the actual grams of ether (determined through the density) by the theoretical mass to determine the percent yield; 87.6%

 

4.41.  The conversion needed is mol Cr → mol H3PO4. Then compare the amount of Cr to the amount of acid present. Cr is the limiting reactant.

 

4.43.  Na2C2O4 is the limiting reactant. percent yield = 86.56%

 

4.45.  Only four molecules can be made.

 

4.47.  This amount cannot be weighted by ordinary balances and is worthless.

 

4.49.  3.4 × 10−3 M H2SO4

 

4.51.  9.6 × 10−3 M Cl

 

4.53.  22.4%

 

4.55.  The empirical formula is BH3. The molecular formula is B2H6.

 

4.57.  49.6 mL

 

4.59.  13.64 mL

 

4.61.  0.0122 M

 

4.63.  34.99 mL KOH

 

4.65.  The empirical formula is WCl4.

 

4A.2.  (a)  oxidation-reduction (addition)(b)  acid-base (neutralization)(c)  oxidation-reduction (combustion)

 

4A.4.  It is an oxidation-reduction reaction because the oxidation state of the silver changes during the reaction.

 

4A.6.  (a)  H +1,  P +5,  O −2(b) Al +3,  H +1,  O −2(c) Se +4,  O −2(d) K +1,  N +3,  O −2(e) In +3,  S −2(f) P +3,  O −2

 

4A.8.  (a)  acid-base(b)  oxidation-reduction:  Na is oxidized, H+ is reduced(c)  oxidation-reduction:  Mg is oxidized, Cl2 is reduced(d)  acid-base(e)   oxidation-reduction:  P3− is oxidized, O2 is reduced(f)  acid-base

 

4A.10.

(a)  2 HCl(g) + Ca(OH)2(s) → CaCl2(s) + 2 H2O(l)

(b)  Sr(OH)2(aq) + 2 HNO3(aq) → Sr(NO3)2(aq) + 2 H2O(l)

 

4A.12.

(a)  2 Al(s) + 3 F2(g) → 2 AlF3(s)

(b)  2 Al(s) + 3 CuBr2(aq) → 3 Cu(s) + 2 AlBr3(aq)

(c)  P4(s) + 5 O2(g) → P4O10(s)

(d)  Ca(s) + 2 H2O(l) → Ca(OH)2(aq) + H2(g)

 

4A.14.

(a)  Mg(OH)2(s) + 2 HClO4(aq) → Mg2+(aq) + 2 ClO4(aq) + 2 H2O(l

(b)  SO3(g) + 2 H2O(l) → H3O+(aq) + HSO4(aq) (a solution of H2SO4)

(c)  SrO(s) + H2SO4(l) → SrSO4(s) + H2O

 

4A.16H2(g) + F2(g) → 2 HF(g)

 

4A.182 NaBr(aq) + Cl2(g) → 2 NaCl(aq) + Br2(l)

 

4A.202 LiOH(aq) + CO2(g) → Li2CO3(aq) + H2O(l)

 

4A.22.

(a)  Ca(OH)2(s) + H2S(g) → CaS(s) + 2 H2O(l)

(b)  Na2CO3(aq) + H2S(g) → Na2S(aq) + CO2(g) + H2O(l)

 

4A.24.

(a)  step 1N2(g) + 3 H2(g) → 2 NH3(g)

    step 2NH3(g) + HNO3(aq) → NH4NO3(aq) → NH4NO3(s) (afterdrying)

(b)  H2(g) + Br2(l) → 2 HBr(g)

(c)  Zn(s) + S(s) → ZnS(s) andZnS(s) + 2 HCl(aq) → ZnCl2(aq) + H2S(g)

 

4A.26.

(a)  Sn4+(aq) + 2 e → Sn2+(aq)

(b)  Ag(NH3)2+(aq) + e → Ag(s) + 2 NH3(aq)

(c)  Hg2Cl2(s) + 2 e → 2 Hg(l) + 2 Cl(aq

(d)  2 H2O(l) → O2(g) + 4 H+(aq) + 4 e

(e)  6 H2O(l) + 2 IO3(aq) + 10 e → I2(s) + 12 OH(aq)

(f)  H2O(l) + SO32−(aq) → SO42−(aq) + 2 H+(aq) + 2 e

(g)  8 H+(aq) + MnO4(aq) + 5 e → Mn2+(aq) + 4 H2O(l)

(h)  Cl(aq) + 6 OH(aq) → ClO3(aq) + 3 H2O(l) + 6 e

 

4A.28.

(a)  Sn2+(aq) + 2 Cu2+(aq) → Sn4+(aq) + 2 Cu+(aq)

(b)  H2S(g) + Hg22+(aq) + 2 H2O(l) → 2 Hg(l) + S(s) + 2 H3O+(aq)

(c)  5 CN(aq) + 2 ClO2(aq) + 3 H2O(l) → 5 CNO(aq) + 2 Cl(aq) + 2 H3O+(aq)

(d)  Fe2+(aq) + Ce4+(aq) → Fe3+(aq) + Ce3+(aq)

(e)  2 HBrO(aq) + 2 H2O(l) → 2 H3O+(aq) + 2 Br(aq) + O2(g)

 

4A.30.

(a)  2 MnO4(aq) + 3 NO2(aq) + H2O(l) → 2 MnO2(s) + 3 NO3(aq) + 2 OH(aq)

(b)  3 MnO42−(aq) + 2 H2O(l) → 2 MnO4(aq) + 4 OH(aq) + MnO2(s) (in base)

(c)  Br2(l) + SO2(g) + 2 H2O(l) → 4 H+(aq) + 2 Br(aq) + SO42−(aq)

License

Chapter 4 Key Copyright © by Nicole Bouvier-Brown; Saori Shiraki; J. Ryan Hunt; and Emily Jarvis. All Rights Reserved.